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ABSTRACT: 
 
Understanding soil moisture is essential for earth and environmental sciences especially in geology, hydrology, and meteorology. 
Remote sensing techniques are widely applied to large-scale monitoring tasks. Among them, DInSAR using multi-temporal spaceborne 
SAR images is able to derive surface movement up to mm level over an area. One of the factors inducing the movement is variation 
of soil moisture. Based on this, a semi-empirical approach can be tailored to retrieve the underground water content. However, the 
derived movement is often contaminated with other irrelevant noise. Besides, a time-series analysis could not be simply implemented 
without additional fusion and calibration. In this paper, we propose a novel modelling based on advanced DInSAR to solve these 
problems. The irrelevant noise will be removed as parts of the modelled elements in the DInSAR processing. A forward model on a 
scene is built by regressing the measured soil moisture on the DInSAR-derived movement series. We tested our approach using 
Sentinel-1 images in the grasslands of organic soil within State of Brandenburg, Germany. The Pearson correlation coefficients between 
the measured soil moistures and the DInSAR-derived movements are up to 0.91. The mean square errors of the predicted soil moistures 
compared with the measurements reach 3.03 % (volumetric water content) at best. Our study shows a promising new concept to develop 
a global monitoring of soil moisture in the future. 
 
 

1. INTRODUCTION 

Soil moisture is an important factor in geology, hydrology, 
meteorology, agriculture, disaster analysis, and human activities. 
For example, it indicates the inflow and outflow of water volume 
subject to precipitation, snowfall, and frosting, predicts the 
probability of a forest fire, and controls the effectiveness of 
arable farming. Measuring the soil moisture via in-situ sensors 
over a land of a certain size is not cost-effective. Remote sensing 
has the potential to make such monitoring operational in practice. 
Many colleagues used spaceborne images in their projects as the 
signals relevant to moisture across an extensive area can be 
repeatedly acquired at a short period.  
 
In this study, we focus on spaceborne active SAR to derive soil 
moisture (Barrett et al., 2009; Das and Paul, 2015; Gabriel et al., 
1989; Greifeneder et al., 2019; Huang et al., 2019; Nolan et al., 
2003; Paloscia et al., 2013; Tampuu et al., 2020; Zwieback et al., 
2017). This all-weather sensor orbits and collects the surface data 
on Earth around the clock. For example, Sentinel-1 launched in 
2014 has been providing the costless images ever since then. The 
interferometric wide (IW) swath mode acquires a new image at 
shortest every 6 days, which covers an area of 250 km × 200 km 
subject to a ground resolution about 5 m × 20 m. We can resort 
to the commercial satellites like TerraSAR-X if a higher 
spatiotemporal resolution is demanded. The new SAR 
constellations like Capella-X and TanDEM-L are scheduled or 
planned to be launched in the coming future. We believe SAR is 
an indispensable tool for further development. 
 
There are many different methods and assumptions using SAR 
images to estimate soil moisture (Barrett et al., 2009; Das and 
Paul, 2015). In principle, a SAR signal, which is reflected from 
the ground to the antenna, is subject to many factors such as radar 
band, backscattering coefficient, polarization, incidence, surface 
roughness, soil type and texture, vegetation cover, and soil 
moisture near surface. Many fellows developed theoretical and 
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physical models to retrieve moisture values from SAR signals 
such as backscattering coefficient and coherence. Actually, these 
models are often cumbersome and not transferable to different 
scenes. Part of the reason is that the training data and parameters 
cannot be accurately quantified or measured all the time. A viable 
solution is to simplify these models into empirical or semi-
empirical versions, which satisfy a certain degree of accuracy. 
For instance, many studies have validated that the correlation 
between water contents in soil and backscattering coefficient is 
nearly positive (Huang et al., 2019; Paloscia et al., 2013). As we 
know, there is not a golden rule yet in model generalization 
because most of the parameters must be empirically determined 
case by case. 
 
The surface movement (mm level) derived by differential 
interferometric SAR (DInSAR) can be caused by variation of soil 
moisture (Gabriel et al., 1989; Nolan et al., 2003; Tampuu et al., 
2020; Zwieback et al., 2017). This phenomenon results from the 
change of penetration depth of the SAR signal near the surface, 
which leads to a pseudo movement. Another reason is credited to 
swelling and shrinking of (esp. clay- or organic-rich) soil body, 
which is mainly subject to precipitation and groundwater (self-
citation). A semi-empirical approach can then be tailored to 
obtain soil moisture. However, the soil moisture indices 
regressed from their movements are often contaminated due to 
the phase noise. Two main noise sources come from atmospheric 
and topographic disturbances. Besides, each movement between 
two image acquisitions is evaluated individually. Hence we 
cannot simply implement a time-series analysis on soil moisture 
without additional fusion and calibration. These problems are 
solved in our new method. 
 
This paper demonstrates a new concept based on a time-series 
DInSAR - small baseline subset (SBAS) (Berardino et al., 2002; 
Lanari et al., 2007) for soil moisture monitoring. SBAS computes 
at once the time-series movement at mm level over an extensive 
area. The atmospheric and topographic phase noises are 
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suppressed via modelling plus a spatiotemporal filtering. A local 
forward model of a scene is built by regressing the moisture 
measurements on the corresponding movement series. Our tests 
using Sentile-1 images show a promising accuracy level for 
future development and application. 
 
In the following, we first describe our methodology in Section 2. 
Section 3 details how to successfully implement our approach in 
real cases. The test results are then discussed in Section 4. Finally, 
we conclude our works in Section 5. 
 

2. METHODOLOGY 

Our forward model is built via regression to evaluate soil 
moistures from SBAS-derived movements near ground surface 
(Figure 1). The soil moisture underground 5 cm is measured as 
volumetric water content (%) each day at 6 pm by a Decagon 
5TM sensor. We estimate the surface movement from Sentinel-1 
images via SBAS. The forward model will be refined after first 
regression. Some inputs, i.e., pairs of movements and moisture 
readings, are thus removed in second regression if their residual 
errors exceed a certain tolerance. This step will be iterated until 
it meets the defined conditions. Finally, a forward model is 
generated for end use. 
 

 
Figure 1. Forward model by regressing soil moisture on time-

series movement derived by SBAS. 
 

 
Figure 2. Decagon 5TM to measure underground soil moisture 
(https://www.ictinternational.com/products/5tm/decagon-5tm-

vwc-temp/) 
 
2.1 SBAS processing 

Time-series DInSAR evaluates the surface movement up to 
submillimeter level over an extensive area. A bunch of SAR 
images is processed to detect target points of interest. Each target 
point corresponds to a ground patch of a certain size depending 
on the image resolution. The signal series within a patch is 
adequately coherent and so is used to evaluate the local 
movements of different forms, e.g., cumulative time series or 
average velocity. 
 
We chose and adapted SBAS (Berardino et al., 2002; Lanari et 
al., 2007) for the concept and tests of the proposed technique in 
this study. SBAS suits particularly to detecting target points on 
natural scenes like bare soil or grassland and results in reasonable 

movement accuracy. The first step is to generate multi-master 
interferograms from a SAR image series. These interferogram 
sets are temporally connected by singular value decomposition 
(SVD). A pixel is selected as a target point if its ensemble 
coherence computed from all of the interferograms passes a 
specified threshold. The target points are then spatially connected 
by Delaunay triangulation to form a network. Their 
interferometric phases are unwrapped and then used to 
interpolate the phases of the remaining points. A transformation 
is modelled considering the unwrapped interferometric phases 
and the corresponding movements. The movements are then 
evaluated via a least square algorithm. The evaluation accuracy 
is further improved by iteration after removing atmospheric 
phase screen (APS). For this purpose, the APS-like phases are 
derived by means of a low-pass spatial filtering and a high-pass 
temporal filtering. 
 
2.2 Regression to forward model 

The forward model is generated by regressing soil moistures on 
their in-situ surface movements derived by SBAS. We have 
observed in many cases that the correlation between them is 
highly positive. We assume the surface movement is mainly 
caused by the variation of penetration depth of radar wave 
dependent on the soil moisture close to surface. This short-term 
phenomenon can be timely perceived following each image 
acquisition. In contrast, the soil swelling and shrinking is 
enduring and can be only seen from a long-term movement 
sequence. 
 
Our regression model is defined empirically as 
 

S = β+ c ∙ M + ε (1) 
 
where the scalar response S signifies soil moisture expressed as a 
volumetric water content (%), β  means the intercept, c is the 
regression coefficient of M (soil movement, mm), and ε  is 
assumed to be residual errors subject to M. Here the factor from 
the soil swelling and shrinking is ignored to avoid overfitting as 
this effect is usually trivial for a short period. 
 
We feed this model (1) with time series of soil moisture readings 
and corresponding movements to solve the intercept and 
coefficient via least square (Teunissen, 2000a, 2000b). 
Afterwards, the pairs of moisture and movements will be 
removed in the second regression if their residual errors are 
greater than a (empirical) sigma threshold. As a result, the 
forward model is to predict the soil moisture from the SBAS-
derived movement. 
 

3. IMPLEMENTATION 

Our approach is globally operational as long as the following 
instructions are fulfilled. The training data must contain both 
sequences of in-situ soil moistures and surface movements. The 
moistures are measured successively by a local sensor. The 
measurements are usually quantified as volumetric water content 
or permittivity. The sensing depth should be determined by SAR 
experts and pedologists. General speaking, the shallow moisture 
changes the penetration depth of a SAR signal; in contrast, the 
deep water content causes soil swelling and shrinking. In the first 
case, the sensing depth is usually oriented to at least 5 cm for C-
Band radar (Nolan et al., 2003; Nolan and Fatland, 2003). 
 
The variation of penetration depth subject to soil moisture change 
leads to a pseudo surface deformation, which can be derived by 
time-series DInSAR like SBAS. The shorter the image 
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acquisition interval is, the more timely the moisture change is 
sensed for an accurate modelling. Currently, the shortest interval 
is 6 days of Sentinel-1. The interval can be shortened when the 
coming constellations like Capella-X are fully deployed. 
 
As inputs in regression, the moisture measurements and 
DInSAR-derived movements must be aligned under a 
comparable spatiotemporal frame. In this study, the Sentinel-1 
images were acquired at around 5 pm, which approaches the 
sensing time of soil moisture at 6 pm. Three moisture sensors 
were installed in their respective test areas. Each of these areas is 
a homogeneous grassland, where the moisture readings indicate 
the overall scenario. We averaged those point-like movements 
within each test area to match the moisture readings. By doing so, 
the residual noise existing in the movements are further 
suppressed.  
 
For an accurate modelling, the surface movement derived by 
time-series DInSAR should result from only moisture variation 
as far as possible. In our case, the atmospheric, topographic, and 
residual phase noises were modelled and filtered out in SBAS 
processing. Any changes on ground surface due to vegetation 
growth, precipitation, snow, etc. will disturb the radar signals. In 
other words, the affected signal series are not completely 
coherent over time. Consequently, the surface movement is no 
longer correlated to the soil moisture, which conflicts our core 
assumption. Therefore, we excluded the low-coherence phases 
from the SBAS processing. In addition, we also avoided images, 
which were acquired during extreme environmental condition or 
known human activities. 
 

4. EXPERIMENT AND DISCUSSION 

 
Figure 3. Test grasslands Lentzke (0.2 km2), M+F (0.3 km2), 

and Neukammer (1.0 km2) in State of Brandenburg, Germany. 
 

 
Figure 4. Measurement of precipitation (mm) and temperature 
(℃) around test grasslands (Figure 3) during 6 months from 

weather stations of Germany’s National Meteorological Service. 
Precipitation is cumulated every 3 days. Temperature is daily 

averaged. Sample dates correspond to when our Sentinel-1 
images were acquired. 

 
Three test grasslands named Lentzke, M+F, and Neukammer are 
located around 50 km northwest of Berlin (Figure 3). Figure 4 
shows the surrounding precipitation and temperature 
measurements. Their sample dates correspond to when our 

Sentinel-1 images were acquired (Figure 5). Each test area is 
characterized by homogeneous vegetation cover, soil type, and 
water content. The sensors were installed properly by Anonymity 
to measure the soil moisture each day every 6 hours from mid-
November 2019 to mid-May 2020 (Figure 6).  Here we used only 
the data measured at 6 pm close to the acquisition times of the 
Sentinel-1 images. Overall, the moistures before mid-March 
2020 changed rather insignificantly as the rainfall and 
temperature varied randomly. Afterwards, the drought began for 
nearly two months; meanwhile, the temperature kept raising. 
Consequently, the soil moistures dropped straight. 
 

 
Figure 5. Normal and temporal baselines of connected image 

pairs in SBAS processing. 
 

 
(a) 

 
(b) 

Figure 6. Comparison of soil moisture and Gamma Naught of 
(a) VV- and (b) VH-polarized SAR signals at test grasslands 

(Figure 3). 
 
We involved 31 Sentinel-1 images in our analysis. These images 
were VV/VH-polarized, taken under ascending Interferometric 
Wide (IW) swath mode from mid-November 2019 to mid-May 
2020, and resampled to ground distance of 30 m × 30 m. The VV- 
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and VH-polarized complex signals were calibrated into Gamma 
naught values, whose correlation to soil moisture is assumed to 
approximate linear or at least partly (Huang et al., 2019; Paloscia 
et al., 2013). Gamma naught is defined as the intensity of the 
complex signal reflected from ground. It can be interpreted as the 
calibrated radar brightness of an image pixel, which is 
independent from the local incidence. An empirical or semi-
empirical model can hence be generated for further monitoring. 
Our comparison in Figure 6 shows that the VV cases more 
conform to this assumption than the VH cases. The former’s 
Pearson correlation coefficients (PCC) are 0.67, 0.84, and 0.76 
for the three test sites; the latter’s 0.77, 0.78, and 0.22 (Table 1). 
In general, the correlation is not stable enough for a repeatable 
modelling. This conclusion is also found in many other studies. 
 
Grassland PCC_SVV PCC_SVH PCC_SM MAE_SS (%) 

Lentzke 0.67 0.77 0.91 3.15 

M+F 0.84 0.78 0.88 3.03 

Neukammer 0.76 0.22 0.82 4.47 

Table 1. Comparison between measurement and evaluation. 
PCC_SVV, *_SVH, and *_SM: PCC of measured soil moisture 

to VV-polarized Gamma Naught, VH-polarized Gamma 
Naught, and SBAS-movement. MAE_SS, mean absolute error 
between measured and predicted soil moistures (via respective 

forward models). 
 

 
Figure 7. Comparison of soil moisture and SBAS-derived 
movement at Lentzke (Figure 3). Movement: negative and 

positive, away and towards Sentinel-1 antenna. Sample dates 
correspond to Sentinel-1 acquisitions. 

 

 
Figure 8. Comparison of soil moisture and SBAS-derived 

movement at M+F (Figure 3). 
 
Our approach implemented SBAS processing to compute the 
surface movement of the test areas. Here only the VV-polarized 
Sentinel-1 images were used (Figure 5). The resultant cumulative 
movement series along line of sight are averaged within each test 

grassland (Figure 7, Figure 8, and Figure 9). Their PCCs to the 
measured soil moistures are 0.91, 0.88, and 0.82, which are 
generally more correlated than those subject to the Gamma 
naught values (Table 1). These three PCCs are sufficiently high 
to validate the core assumption in our modelling. For the lowest 
PCC 0.82, the decorrelation is mainly subject to the dissimilarity 
during the middle period (Figure 9). The pedologists inferred that 
the moistures back then were overmeasured as the infiltrated 
water accumulated on the sensing elements. 
 

 
Figure 9. Comparison of soil moisture and SBAS-derived 

movement at Neukammer (Figure 3). 
 
We predicted the soil moistures at the three test areas from their 
forward models (Figure 7, Figure 8, and Figure 9). Their mean 
absolute errors to the ground truth data are 3.15, 3.03, and 4.47 
% during the measurement period of 6 months (Table 1). The last 
accuracy is the worst as expected because of overmeasured 
reading. In fact, our approach rather than the in-situ sensor might 
catch the actual moisture condition. According to the accuracy, 
we believe our approach is promising for a time-series 
monitoring. 
 
Last but not least, we conducted a blind test to check the 
modelling transferability in case a local measurement is 
unavailable. The forward model of Lentzke was then applied to 
evaluate the soil moistures in the test sites M+F and Neukammer. 
These three areas possess similar vegetation and soil type above 
shallow layer. This consistency is prerequisite for model transfer. 
Here we added an offset into the model to balance the difference 
of the initial moistures among the areas. As a result, the PCCs are 
0.88 and 0.82 and the mean absolute errors are 3.19 and 4.72 % 
(Table 2). The mean absolute errors are increased only up to 0.25 
% compared with the tests using their own models (Table 1). We 
hence regard the accuracy subject to a transferred model is 
comparable to its own model given well controlled conditions. 
Even if an offset lacks to obtain absolute soil moistures, the 
precision according to the PCCs over 0.8 suffices for evaluating 
relative moisture change. 
 

Grassland PCC MAE (%) 

M+F 0.88 3.19 

Neukammer 0.82 4.72 

Table 2. Comparison between measured and predicted soil 
moistures (via forward model computed from Lentzke data). 

MAE, mean absolute error. 
 
 

5. CONCLUSIONS 

Our novel approach is able to evaluate the time-series soil 
moisture of a certain region from multi-temporal spaceborne 
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SAR images. We have tested it using Sentinel-1 images in three 
grasslands of organic soil Lentzke, M+F, and Neukammer within 
State of Brandenburg, Germany for a 6-month period. The PCCs 
between the measured soil moistures and the DInSAR-derived 
movements are 0.91, 0.88, and 0.82 (average 0.87). Such a high 
correlation satisfies the prerequisite to our forward modelling. 
The soil moistures predicted from the forward models were 
compared with the measurements. The mean absolute errors 
(volumetric water content) are 3.15, 3.03, and 4.47 % (average 
3.55%). The absolute accuracy seems quite impressive 
considering that the actual moistures dropped around 30 % in 6 
months. We also applied the Lentzke’s forward model to M+F 
and Neukammer sites to check the transferability. The mean 
absolute errors are raised merely up to 0.25 %. Overall, we 
believe our modelling is ready for local end use at least for those 
sites similar to ours, i.e., low vegetation coverage plus organic 
soils. We will adapt our approach for different site conditions, 
e.g., dense vegetation coverage or inorganic soil body. Under 
these conditions the soil moisture might not be caught in a way 
we assumed. For instance, if an area is moving up and down due 
to groundwater use, this physical movement must be excluded 
from the pseudo movement caused by moisture variation. To do 
so, the auxiliary knowledge or data such as in-situ GNSS 
measurement are prerequisite.  
 
The proposed technique can be integrated with other platforms 
and systems for a global monitoring mission. The necessary input 
data for modelling are SAR images and in-situ moisture 
measurements. The Sentinel-1 images has proven workable in 
our study, which are costless and cover nearly the global land. In 
case a local measurement is not available for modelling, we have 
proven that the relative moisture change can be computed based 
on advanced DInSAR. Another solution is to train the forward 
model at an alike region, which is reachable to collect the 
measured data. We can check the homogeneity between different 
areas by using remote sensing to determine if a model transfer is 
feasible.  
 
In the coming future, we first plan to extend the current 6-month 
test period to at least one year covering four seasons. We will 
analyze the influences of natural factors on our modelling in 
more detail, e.g., temperature, rainfall, vegetation growth, etc. 
Secondly, we will repeat our tests under different site conditions. 
The descending Sentinel-1 images and other SAR sources of X-
Band and L-Band would be involved for further exploration. The 
feasibility, portability, and robustness of our approach will be 
further validated. In addition, the vertical and horizontal surface 
movements will be derived from decomposition of both 
ascending and descending DInSAR results. We will explore their 
relation to our modelling. Last but not least, we are discussing 
with Capella Space about creating a pilot project. The new 
coming Capella-X constellation would be used to monitor the soil 
moisture at a region of interest every 2 to 3 days based on our 
approach. 
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